# Common Core: Arithmetic with Polynomials & Rational Expressions

##### HSA.APR.A1

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

October 1, 2018##### HSA.APR.B2

Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).

October 1, 2018##### HSA.APR.B3

Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

October 1, 2018##### HSA.APR.C4

Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x² + y²)² = (x² – y²)² + (2xy)² can be used to generate Pythagorean triples.

October 1, 2018##### HSA.APR.C5

(+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.1

October 1, 2018##### HSA.APR.D6

Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.

October 1, 2018##### HSA.APR.D7

(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

October 1, 2018