Set the (VR) Screen: Wearable Device Designer - SCOPES Digital Fabrication

Lesson Details

Age Ranges
Standards
MS-ETS1-1, MS-ETS1-2, MS-ETS1-3, MS-ETS1-4, Fab-Safety.1, Fab-Modeling.1, Fab-Fabrication.1, Fab-Design.1

You need to login or register to bookmark/favorite this content.

Author

Aidan Mullaney
Aidan Mullaney
Other
Aidan Mullaney is the Instructional Manager for the GE/Celtics Brilliant Play Lab. His primary role with the Fab Foundation is developing and delivering curriculum for the middle school mobile lab. Aidan facilitates career-related activities with a focus on STEM in… Read More

Summary

Students are challenged over the course of five (5) lessons to develop a cardboard virtual reality headset. Working as a “company” or in groups, learners will fulfill job specific tasks to produce a headset and present their prototypes. Students will employ the Engineering Design Process throughout the five days of 5E model instruction. This lesson uses 2D vector design software and a laser cutter to produce student prototypes. This real world challenge also introduces students to a number of careers including Wearable Device Designer.

What You'll Need

Machines:

  • Laser Cutter
  • Computers (one per pupil) w/ Internet access
  • Software: Inkscape
  • (Optional) Vinyl Cutter w/ vinyl for additional designs

Essential Materials:

  • Google Cardboard Template file (v1.0)
  • E-flute Cardboard (pizza box cardboard)
  • Biconvex Lens Set – 25mm Diameter 40mm Focal Length (two lenses per headset)
  • Clear tape or glue adhesive

Additional materials:

  • Rubber Bands – Size 14
  • Hook and Loop (Velcro) fasteners
  • Felt
  • Craft, wrapping, or origami paper
  • Suspenders (child)
  • Prefabricated VR Headsets

 

The Instructions

Day One

Students will be introduced to the concept of designing a VR headset by first identifying a need and/or problem. Students will begin ideating devices with their goals in mind and follow guided instruction using Inkscape to build the foundation of vector software skills.

Engage

Time: ~15 minutes

Materials: Projector, Computer, Laser Cutter, Cardboard, Example VR headsets, Paper, Pencil

Process:

(EDP: Identify)

Before class begins, ensure there are prefabricated VR cardboard headsets to show students as they enter. You may want examples cutting out on the laser cutter.

Organize students into groups of two – four. Their group will represent a new virtual reality (VR) company similar to “Oculus” or “PlaystationVR”. At the end of the week, students will pitch their company designed VR headsets to the class. In order to do this, everyone will have defined roles (assigned later).

Ask students, in their groups, “Why might someone not be able to attend a basketball game?” Or “Why might someone not be able to visit (a particular location)?” Have students list and share their responses.

Inform students that VR Headsets are immersive, head-mounted displays that allow individual to engage in a virtual environment. Simply put, they are devices that allow a person to feel like they are somewhere else or in the projected environment.

Share with students the following video of highlights from NBA games in VR: https://www.youtube.com/watch?time_continue=2&v=xEbZV_BmkYw

 

Explore

Time: 30-50 minutes

Materials: Computer (one per student), Inkscape software (Computer mouse), VR Headsets, Unassembled/-folded Headsets (one per group), Paper, Pencil

Process:

(EDP: Research)

Pass out prefabricated or purchased VR headsets to students.

Using their phones, allow students ~10 minutes to test out VR apps or videos. Recommended apps include: “Cardboard”, “Street View”, “Expeditions”, “YouTube” – search for “VR” videos. You may also show the NBA video from earlier.

While they test the headsets, ask students to record their answers to the following questions:

  • In what ways is your headset functionally and aesthetically sufficient?
  • In what ways is it NOT functionally and aesthetically sufficient?
  • Overall how could it be improved to fit your needs?

Share results from student groups.

Digital fabrication can rapidly produce customized devices. As a class, you will begin exploring the 2D vector software “Inkscape” and laser cutting technology to create customizable headsets in groups.

Pass out computers. After opening Inkscape, allow students 5-10 minutes to do, make, and explore with limited or no guidance from the instructor.

While students explore, ask guiding questions including but not limited to the following:

  • How do I add a shape to my canvas?
  • When my shape is selected, what can I do to the shape?
  • What does the “5” key do? What about the “4” or “3” key? The “+” and “-” key?
  • What happens when I choose View → Display Mode → Outline?

Help students download or open the attached Google Cardboard .svg file (See attached “v1 Google Cardboard”).

Pass out unfolded, disassembled cardboard headsets to students.

Allow students 5 minutes to test out the proper assembly of the disassembled headset.

(EDP: Develop Solutions)

As groups begin to develop new headset ideas, ask students the following:

  • For whom or what audience is their headset intended? Ex. teenage gamers, primary school learners, professional athletes, med-school students, etc.
  • How will this audience use their headset? Ex. hands-free, sitting down, in classrooms, etc.
  • What designs will effectively inform their audience of their company brand? Ex. the company name in bold, logo on the front, different materials on the sides, etc.

Before students design on the computer, instruct students to individually sketch on paper at least two different ideas for the appearance and function of a prototype headset. Students should use notes from the earlier (Research) step to inform their new designs:

Appearance: add logos, text, or designs to headset exterior. Reminder: the laser cutter does not add color. Instead it removes a top layer of cardboard material. Color may be changed with additional materials in future versions of the headset.

Function: Add or remove cuts, install felt materials on nose or eye holes, connect straps or suspenders to headset to wear on head without hands.

Direct students to begin designing their sketches within Inkscape during the remaining class time. Ensure students save their work.

Day Two

Students will continue to explore Inkscape and learn the settings within the software that interface directly with the laser cutter. Students will also Develop and Select a Solution for their VR headset v1.0.

Explain

Time: 30-50 minutes

Materials: Computer (one per student), Inkscape software (optional – computer mouse)

Process:

(EDP: Develop Solution)

Open saved student files from yesterday.

Inform students today they will learn the process of adding logos, images, and designs to their headsets. Discuss the differences between a Bitmap and Vector image.

Allow students to add a design or logo to their VR headset:

  • Select & Save a relevant, preferably creative commons image from the Internet
  • Import Image: File → Import, “Image Rendering Mode” – Select “Smooth”
  • View → Display Mode → Outline

Create a vector image:

  • Select bitmap logo or
  • Path → Trace Bitmap
  • Check “Live Preview” Box
  • Under Single scan: creates a path select one of the options (Brightness cutoff, Edge detection, Color quantization, Invert image) and increase or decrease the “Threshold” to your preference
  • Click “OK” & close Trace Bitmap window
  • Delete old image, or
  • Position logo within your headset outline

Using the pictured diagram, inform students the best locations for logos, text, or designs are highlighted in green. Note: certain designs will need to be rotated or adjusted to view properly when wearing the headset. See example design later in this document.

Once students have placed their logos on their design, guide them through inputting the settings needed to inform the laser cutter to “cut” through the material. One way to practice this skill is to select all blue lines and change their settings to the following:

  • Object → Fill and Stroke
  • Fill = ⛝ – “no paint”
  • Stroke Paint = ⬛ – “flat paint” & “R” – 0, “G” – 0, “B” – 0, “A” – 255
  • Stroke Style: Width – 0.001, Units – “in”
  • Opacity % = 100

For red lines, repeat only Stroke Style: Width – 0.001”.

Once completed, change View settings to Outline (View → Display Mode → Outline).

Note: Changing the lines from blue to black allows students to apply Vector Cut settings (described later) to their design for laser cutting. It is also possible to achieve similar results by changing the speed and power of the laser within a “Color Mapping” feature of the print settings.

(EDP: Select Solution)

Allow students to share their previously sketched and/or newly created Inkscape designs within groups. After sharing (5-10 minutes), groups should either combine ideas into one headset design by incorporating aspects of each member’s designs or agree on one member’s design to create. The selected design will serve as prototype v1.0 for their company.

When creating the selected solution, remind students the following:

  • For whom or what audience is their headset intended?
  • How will this audience use their headset?
  • What designs will effectively inform their audience of their company brand?

Direct students to sketch the design of the combined or selected prototype for their own records.

Save and collect Inkscape or .svg files from students and prepare them for cutting on the laser cutter. During the next class, allow students to see the laser cutting process.

Day Three

Inform students about STEM Careers and how the laser cutter operates. Students will also be divided into roles within their groups to create their VR headset v2.0.

Explain

Time: 10-20 minutes

Materials: Projector, Computer

Process

In groups of two – four, provide students with a list of STEM careers. Provided are the following: Doctor, Medical Scientist, Data Analyst, Software Engineer, Webpage Designer, Financial Analyst, Mechanical Engineer, Electrical Engineer, Industrial Engineer

Ask students to describe the roles of two or three of these careers.

These careers or types of careers all exist within both the GE and Celtics organizations. Today, there are ways to join the NBA that don’t include playing basketball. If your dream is to be a member of the Boston Celtics, these STEM Careers are one way to accomplish that goal. The challenges over the next few days are preparing us for a future career: Wearable Device Designer. A professional in this role will use vector software, like Inkscape, to design wearable devices to solve problems.

Inkscape works with the laser cutter because the vector images and shapes on our canvas direct the path of the laser. A laser is produced and focused using lenses and mirrors that can adjust to specific settings. These intricate optics allow us to burn through, etch, or engrave the material. Respectively, these options are Vector Cut, Vector Engrave, and Raster Engrave. For this project, we will vector cut out shapes and raster engrave the logos.

 

Extend/Elaborate

Time: 40-50 minutes

Materials: Projector, Computer (one per student), Inkscape software (optional – computer mouse), Laser cutter, Laser cutter materials (cardboard, wood, acrylic) Sketch paper, Pencils

Process

(EDP: Prototype)

Cut out v1.0 headsets on the laser cutter. Allow students to assemble their devices.

(EDP: Test)

Ask students the following questions to evaluate VR headset v1.0:

  • How does the device look?
  • Does the device function as intended?
  • How does the device feel?

(EDP: Communicate/Redesign)

Direct students to evaluate their devices with a partner group. Without giving any information, students ask partner groups the following:

  • For whom do you believe this headset is intended?
  • How would you imagine this type of person or audience using the headset?
  • Is the brand of the company visible or obvious in some way?
  • What improvements could be made to refine this group’s device?

Gather the class and reintroduce the challenge: “Develop a VR headset that appears and functions uniquely for a specific target audience.”

In student groups, allow students to select which of the following roles they would like to fill for the remainder of this project. Groups of 2 or 4+ may have multiple students on a role or vice versa.